
Large j behaviour of
dipole cosmology

transition amplitudes

Jacek Puchta

Introduction

The lorentzian
polyhedra propagator -
preliminary analysis

Integrand’s
smoothness check

Results and summary

Large j behaviour of dipole cosmology
transition amplitudes

Jacek Puchta

Department of General Relativity and Gravitation, Faculty of Physics,
University of Warsaw

Centre de Physique Théorique, Marseille
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Aim of the research and motivation

The aim
to investigate the properties of Lorentzian Polyhedra Propagator:

T =

∫
SL(2,C)

dgY †gY

in large j limit

Motivation
I DC amplitude is proportional to

∫
dg
∏4
i=1 〈~ni |Y †gY |~ni 〉j

[ Bianchi, Rovelli, Vidotto: Phys.Rev.D82 (2010)] , [ Vidotto: Class.Quantum Grav.28 (2011)] , [ Borja, Garay,

Vidotto: SIGMA 8 (2012)]

I 2-vertex-and-1-edge DC:∫
dgdg ′

∏4
i=1 〈~ni |Y †gY Y †g ′Y |~ni 〉j [ JP, in progress]

I radiative corrections of ”melonic” graph proportional to
log Λ · T2

[ Riello: arXiv:1302.1781 (2013)]
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The SPA method

We estimate the following integral for Λ� 1 by the value of
integrand in the critical point x0 of f (x)

∫
dx g(x)e−Λf (x) =

√
(2π)

Λ|f ′′(x0)|
g(x0)e−Λf (x0) (1)

for multidimensional integrals:

∫
dnx g(x)e−Λf (x) =

√(
2π
Λ

)n(∣∣∣∣∂2f
∂x2

∣∣∣∣
x0

)−1/2

g(x0)e−Λf (x0)

(2)

Note!
∇f (x) must vanish in x0, i.e. x0 must not be the extremum,
where ∇f (x) is discontinues.
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Not obvious decomposition of integrand

What if the function we integrate does not have an obvious
decomposition into g(x)e−Λf (x)?

Consider F (Λ) =
∫
dxΦ(x ,Λ). Let’s assume, that the integrand

Φ(x ,Λ) has appropriate asymptotic behaviour, but we don’t know
its decomposition into f (x) and g(x). In such a case we need to
investigate the function

φ(x) := lim
Λ→∞

1
Λ

ln(Φ(x ,Λ)) (3)

we will call it the exponent part of the integrand.
The SPA formula will be true for critical points and Hessian matrix
of φ(x).
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Definition

Def: Lorentzian polyhedra propagator
Given a set of spins j1, . . . , jN we define an operator

T :=

∫
SL(2,C)

dg
[
Y †gY

](j1⊗···⊗jN )
(4)

acting on Hj1 ⊗ · · · ⊗ HjN

We can consider its matrix elements in the |m〉j basis:

Tm
′
1···m

′
N

m1···mN :=

∫
SL(2,C)

dg 〈m1, . . . ,mN |Y †gY |m′1, . . . ,m′N〉j1⊗···⊗jN

=

∫
SL(2,C)

dg
N∏
i=1

〈mi |Y †gY |m′i 〉ji

=

∫
SL(2,C)

dg
N∏
i=1

D(γji ,ji )(g)
ji ,m
′
i

ji ,mi
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Domain and rank

It is easy to check, that T acts non-trivially only on the invariant
subspace of Hj1 ⊗ · · · ⊗ HjN :

T =

∫
SL(2,C)

dg Y †gY =

∫
R3×SU(2)

dkdu Y †kuY

=

∫
R3
dk Y †kY

∫
SU(2)

udu = Â · PInv

T =

∫
R3×SU(2)

dkdu Y †ukY = PInv · Â

Thus
T = PInv · B̂ · PInv

So it’s enough to study the matrix elements between the SU(2)
invariants:

Tιι′ =

∫
SL(2,C)

dg 〈ι|Y †gY |ι′〉
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Symmetries of the integrand 1 - SU(2)

We need to integrate the function Φιι′(g , J) := 〈ι|Y †gY |ι′〉 on
SL(2,C), where J = maxi=1,...,N(ji ). We anticipate that the
critical point will be in g = 1. Let us study the behaviour of Φ
close to g = 1.

There are six-dimensional basis vector fields on SL(2,C) given by
the generators of rotations Ji and generators of boosts Ki
(i = 1, 2, 3).

It’s straightforward to see, that JiΦιι′(g) ≡ 0
Indeed: Ji are SU(2) generators, thus they commute with the Y
map, and Ji |ι〉 = 0, so

〈ι|Y †gJiY |ι′〉 = 〈ι|Y †gYJi |ι′〉 = 0
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Symmetries of the integrand 2 - z-boost
Let’s now consider a z-boost Y †eηK3Y . Since [K3, J3] = 0, it’s
convenient to consider it in the |m〉j basis.

Let’s define the function f (j)
m (η)

〈m|Y †eηK3Y |m′〉j =: δm,m′ f (j)
m (η) (5)

We decompose the invariant tensors in |m〉j basis

|ι〉 =
∑
{mi}

ιm1···mN |m1, . . . ,mN〉j1⊗···⊗jN

and thus

Φι,ι′(eηK3 ) =
∑
{mi}

ιm1···mN ι′m1···mNΦm1···mN
m1···mN (eηK3 )

where Φm1···mN
m1···mN (eηK3 ) =

∏N
i=1 f

(ji )
mi (η)

Note that

since Ji |ι〉 = 0, only the terms with
∑N
i=0mi = 0 counts.
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Symmetries of the integrand 3 - boost direction

Consider now a boost in arbitrary direction ~n.

Since
eη~n·

~K = eu
−1ηK3u = u−1eηK3u

for some u ∈ SU(2), the value of Φιι′(eη~n·
~K ) is given by

Φιι′(eη
~n·~K ) = 〈ι|Y †u−1eηK3uY |ι′〉 = 〈ι| u−1Y †eηK3Yu |ι′〉

= 〈ι|Y †eηK3Y |ι′〉 = Φιι′(eηK3 )

Thus the behaviour of Φιι′(eηK3 ) and f (j)
m (η) is crucial in further

calculation.
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Strategy of integration 1: parametrisation of
SL(2,C)

We need to integrate
∫
SL(2,C)

dg Φιι′(eη(g)K3 ).
Since the integrand depend only on η, one may be tempted to use
the decomposition g = u−1

1 e
ηK3u2 and the measure∫

SU(2)×SU(2)×R+

du1du2
sinh2 η

4π
dηΦιι′(eηK3 )

however we anticipate that the maximum of Φ is η = 0, where the
parametrisation breaks down.

Thus let’s parametrise SL(2,C) with (u,~x) ∈ SU(2)× R3:

g(u,~x) := un~x
−1e|~x|K3n~x

where n~x ∈ SU(2) is such a rotation, that n~x−1|~x |L3n~x = ~x · ~L, i.e.

n~x =

(
cos θ(~x)

2 −e ı̇φ(~x) sin θ(~x)
2

e−ı̇φ(~x) sin θ(~x)
2 cos θ(~x)

2

)
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Strategy of integration 2: measure

dg = du1 du2
sinh2 η

4π
dη = du d3x µ(~x)

= du
1

(4π)2 dφ(~x) sin θ(~x)dθ(~x) sinh2 η(~x)dη(~x)

Putting d3x = |~x |2 sin θdθdφ and η = |~x | we get

µ(~x) =

(
sinh η
4πη

)2

Note that
There are two properties of the measure important for the SPA
method:

I lim~x→0 µ(~x) = 1
(4π)2

I limJ→∞ 1
J ln [µ(~x)] = 0 - thus it does not effect the behaviour

of the exponent part of the integrand.
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Strategy of integration 3: SPA and Hessian

We expect the critical point to be ~x0 = 0. If the exponent part
φιι′(~x) of the integrand Φιι′(~x) is smooth (and so is its derivative)
in ~x0, the integral equals

Tιι′ =

∫
SL(2,C)

dg Φιι′(g) =

(
2π
J

) 3
2 1√
|H|

µ(0)Φιι′(0)

(
1 + O

(
1
J

))
where H is the Hessian matrix of φιι′(~x) := limJ→∞ 1

J ln Φιι′(~x)

Hessian of φ
Since φιι′ is spherically symmetric (so it is a function of one
variable η), we can express it’s Hessian for η → 0 as

det [Hij ]η=0 = det
[

1
2

(
∂i∂jη

2) d2φ

dη2

]
= det

[
δij
d2φ

dη2

]
=

(
d2φ

dη2

)3
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The Lorentzian polyhedra propagator

Recall now, that

Φιι′(0) = 〈ι|Y †e0·K3Y |ι′〉 = 〈ι| |ι′〉 = διι′

The Lorentzian polyhedra propagator

So neglecting the 1
J terms the operator T is

Tιι′ =

(
2π
J

) 3
2
(
d2φιι′

dη2

)− 3
2 1

(4π)2 διι′

Now we will check smoothness of the exponent part of integrand,
and calculate the Hessian.
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Strategy

We are going to investigate the function

φ~m(η, J) =
1
J

ln

(
N∏
i=1

f (ji )
mi (η)

)
=
N∑
i=1

1
J

ln
(
f (ji )
mi (η)

)
in the limit J � 1 and η � 1.

We will do it by finding a compact form of f (j)
m (η) and analysing

its Taylor series.
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The f (j)
m (η) function

f (j)
m (η) = 〈m|Y †eηK3Y |m〉j = D(γj,j)(eηK3 )j,mj,m

Thanks to Y maps, which make the parameters (p, k) of primary
series dependent on j , and which pick the lowest spin subspace of
(p, k), these matrix elements has rather simple form

f (j)
m (η) = (2j + 1)

(
2j
j +m

)
e−mηe ı̇γjηe−(j+1)η

∫ 1

0
dx x j+m(1− x)j−m

(
1−

(
1− e−2η) x)ı̇γj−(j+1)

[ Ruhl (1970)]

(simple when compared to the general SL(2,C) representation’s
matrix elements)
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f (j)
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(η)
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φ~m(η, J)

Hessian

Results and summary

The f (j)
m (η) function in hypergeometric

representation

f (j)
m (η) = (2j + 1)

(
2j
j +m

)
e−mηe ı̇γjηe−(j+1)η

∫ 1

0
dx x j+m(1− x)j−m

(
1−

(
1− e−2η) x)ı̇γj−(j+1)

Recalling the integral definition of the Hypergeometric Function of
2nd kind

2F1(a, b, c ; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a

we get

f (j)
m (η) = e−(j+m+1)ηe ı̇jγη

2F1
(

(j +m + 1), (j + 1− ı̇jγ), (2j + 2); (1− e−2η)
)
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(
f (j)
m (η)

)
ln
(
f (j)
m (η)

)
=

− (j +m + 1)η + ı̇jγη + ψ(η)

ψ(η) := ln
[

2F1
(
j +m + 1, j + 1− ı̇jγ, 2j + 2; 1− e−2η)]

Note that the fourth argument of 2F1 is small for η close to 0.
Indeed, 1− e−2η = 2η + O(η2).

Let’s now recall the series definition of 2F1:

2F1(a, b, c ; z) :=
∞∑
k=0

akbk

ckk!
zk

For z close to 0 we Taylor expand it obtaining

2F1(a, b, c ; z) = 1 +
ab
c
z +
a(a+ 1)b(b + 1)

2c(c + 1)
z2 + O(z3) = 1 + ε

Thus we can apply the Taylor expansion to ln [ 2F1(a, b, c ; z)]
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m2η2.
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The final form of the Lorentzian polyhedra
propagator

Given two basis elements ι, ι′ ∈ Inv (Hj1 ⊗ · · · ⊗ HjN ) the
Lorentzian polyhedra propagator’s matrix element is

Tιι′ =
1

(4π)2

(
6π

wγΣNi=1ji

) 3
2

διι′

for wγ = −(1− γ2) + 2ı̇γ
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Summary

I The integrand 〈ι|Y †g Y |ι′〉 has been studied
I Smoothness of the exponent part has been proven - thus the
SPA is applicable

I the direct formula of the Hessian in the critical point has
been found

I The leading order of the operator T has been studied.
I It splits into direct sum of T|j1⊗···⊗jN
I On each space Inv (

⊗
Hji ) it is proportional to the identity

with a factor dependent on total area of polyhedron A =
∑
ji .

Further directions
I Subleading order
I Applications to concrete examples
I Boundary conditions
I ...
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